DNA binding and dimerization specificity and potential targets for the TCP protein family.
نویسندگان
چکیده
The TCP domain is a plant-specific DNA binding domain found in proteins from a diverse array of species, including the cycloidea (cyc) and teosinte branched1 (tb1) gene products and the PCF1 and PCF2 proteins. To understand the role in transcriptional regulation of proteins with this domain, we have analysed the DNA binding and dimerization specificity of the TCP protein family using rice PCF proteins, and further evaluated potential targets for the TCP protein. The seven PCF members including five newly isolated proteins, were able to be grouped into two classes, I and II, based on sequence similarity in the TCP domain. Random binding site selection experiments and electrophoretic mobility shift assays (EMSAs) revealed the consensus DNA binding sequences of these two classes to be distinct but overlapping; GGNCCCAC for class I and GTGGNCCC for class II. The TB1 protein from maize, which belongs to class II, had the same specificity as the rice class II proteins, suggesting the conservation of binding specificity between TCP domains from different species. The yeast 2-hybrid assay and EMSA revealed that these proteins tend to form a homodimer or a heterodimer between members of the same class. We searched predicted 5' flanking sequences of Arabidopsis genes for the consensus binding sequences and found that the consensus sites are distributed in the genome at a considerably lower frequency. We further analysed eight promoters containing the class I consensus TCP sites. The transcriptional activities of six promoters were decreased by a mutation of the TCP binding site, which is consistent with the observation that the class I TCP site can confer transactivation function on a heterologous promoter. These results suggest that the two classes of TCP protein are distinct in DNA binding specificity and transcriptional regulation.
منابع مشابه
Determinants of the DNA binding specificity of class I and class II TCP transcription factors.
TCP proteins constitute a family of plant transcription factors with more than 20 members in angiosperms. They can be divided in two classes based on sequence homology and the presence of an insertion within the basic region of the TCP DNA binding and dimerization domain. Here, we describe binding site selection studies with the class I protein TCP16, showing that its DNA binding preferences ar...
متن کاملBioinformatic Evaluation of miR-222-3p Specificity in Binding to Genes Involved in Acute Lymphoblastic Leukemia in Children
Background and Objectives: Acute lymphocytic leukemia (ALL) is a type of cancer that affects white blood cells. The disease progresses rapidly mandating immediate treatment. ALL is the most common type of leukemia affecting children. An increase in the miR-222-3p molecule has been observed in the course of this disease. The microarray method can be used to examine the binding of this miRNA and ...
متن کاملIdentification of specific DNA binding residues in the TCP family of transcription factors in Arabidopsis.
The TCP transcription factors control multiple developmental traits in diverse plant species. Members of this family share an approximately 60-residue-long TCP domain that binds to DNA. The TCP domain is predicted to form a basic helix-loop-helix (bHLH) structure but shares little sequence similarity with canonical bHLH domain. This classifies the TCP domain as a novel class of DNA binding doma...
متن کاملRapid purification of HU protein from Halobacillus karajensis
The histone-like protein HU is the most-abundant DNA-binding protein in bacteria. The HU protein non-specifically binds and bends DNA as a hetero- or homodimer, and can participate in DNA supercoiling and DNA condensation. It also takes part in DNA functions such as replication, recombination, and repair. HU does not recognize any specific sequences but shows a certain degree of specificity to ...
متن کاملDevelopment of aptameric affinity ligands specific to human plasma coagulation factor VIII using SEC-SELEX
Protein specific aptamers are highly applicable affinity ligands in different fields of research and clinical applications. They have been developed against various targets, in particular, bio-macromolecules such as proteins. Among human proteins, the coagulation factors are the most attractive targets for aptamer selection and their specific aptamers had valuable characteristics in therapeutic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Plant journal : for cell and molecular biology
دوره 30 3 شماره
صفحات -
تاریخ انتشار 2002